Multiplication warm-up

- Biggest product?
- Using five different digits?
- Visual? Numeric?
- Explain how you know your answer is the best.

A Math Teachers' Circle: Functions, Algebra, and Symmetry

Fawn Nguyen and Joshua Zucker @fawnpnguyen and @joshuazucker NCTM Innov8 2016

A Teachers' Circle

- Interested participants
- Usually K-12 teachers
- Problem-solving sessions
- Focused on a topic or theme
- Led by a mathematician
- Interactive, participatory
- For the teachers, not directly for their students

Problem vs Exercise

- Exercise: already know how to do.
- Problem: don't know what to do.
- Algorithms and computations are almost always exercises.
- Know which tools to use, but not how to put them together? That's somewhere in between, perhaps.
- Learn the problem solving salute!
- Our first strategy: Work backwards.

Problem Posing

- Common Core: "Students consider analogous problems" as a problemsolving technique.
- Creating your own problems also makes you more interested in solving them!
- Basic tool of problem posing: variations on a theme. "Add a knob"

A Strange Machine

First input	Second input	Output
2	8	26
1	4	9
4	1	9
8	2	26
0	0	0
0	8	8
3	6	27
3	2	11
5	10	65

First input	Second input	Output
1	1	3
4	7	39
-1	1	-1
2	1	5
4	5	29
2	5	17
100	$1,000,000$	$101,000,100$
10	100	1110
10	20	230

A Strange Machine

- A machine takes in two cards with numbers written on them, and produces a new card with ...
- The product plus the sum?
- One more than the first card, times the second, and then plus the first? (A-SSE2)
- $f(x, y)=x y+x+y ?{ }_{(\text {F-IF 1) }}$
- You have 100 cards, labeled 1 through 100. What questions do you want to ask?

A Strange Machine

- What numbers can be outputs?
- What happens if you keep using the machine?
- How many cards do you end up with?
- What numbers might be on the final card?
- What other questions should I have anticipated?

A Strange Machine

- Where are the knobs?
- What are easier problems, not too scary, that you can work on?
- Does working backwards help?
- What other strategies can we come up with?
- What do we know about what happens?

A Strange Machine

- Turn down 100 to something easier.
- Replace "product plus sum" with something easier.
- Obvious result: monovariant (Be willing to state the simple stuff!)
- Less obvious strategies: symmetry? Invariant?

A Strange Machine

- If we have just "sum", there's only one answer, which is the total.
- Why? How do we know the answer is invariant no matter how we rearrange our use of the machine?
- So, now suddenly we care about whether the "product plus sum" operation is commutative and associative. (3.OA5 6. .EE3)

A Strange Machine

- $x y+x+y=y x+y+x$
- How about if we put in x and y, and then that with z, versus if we put in x with the result of y and z ?
- $(x y+x+y) z+(x y+x+y)+z=$ $x y z+x z+y z+x y+x+y+z$
- And now we don't even need to check the other. Symmetry!
- So now what do we know?

A Strange Machine

- Invariant! There is only one possible answer.

Also wishful thinking. It sure would be nice if we could factor $x y+x+y$.

$x y$	x
y	$?$

A Strange Machine

- Wishful thinking. It sure would be nice if we could factor $x y+x+y$.
- $x y+x+y=x y+x+y+1$

y	1
x	$x y$
1	y

A Strange Machine

- Wishful thinking. It sure would be nice if we could factor $x y+x+y$.

$$
\begin{aligned}
& x y+x+y=x y+x+y+1-1 \\
&=(x+1)(y+1)-1 \\
&(\mathrm{~F}-\mathrm{IF})
\end{aligned}
$$

	y	1
x	$x y$	x
1	y	1

A Strange Machine

- Now $x, y\left[\begin{array}{c}x+1] \\ {[y+1} \\ 1 F\end{array}\right.$
- And so

Which is $[x+1 \mid \sqrt{2} y+1 \| z+1]$-1
And now it's really easy to see that the order of x, y, and z doesn't matter!

So, do we have a final answer?

A Strange Machine

Now we can come back to
$(x-r)(x-s)(x-t)=$
$x^{3}-(r+s+t) x^{2}+(r s+r t+s t) x-r s t$

- We don't want all that subtraction.
$(x+r)(x+s)(x+t)=$
$x^{3}+(r+s+t) x^{2}+(r s+r t+s t) x+r s t$
We don't want x, either. So make it 1.
$(1+r)(1+s)(1+t)=$
$1+(r+s+t)+(r s+r t+s t)+r s t$

Is this a good problem?

- Practices fundamental skills in arithmetic and algebra.
- Easy entry: a student who can add and multiply can make substantial progress
- Depth: patterns emerge that lead to further questions. We have some unanswered questions!
- Multiple approaches
- Surprises!

Is this a good session?

- Dan Meyer: "Be less helpful"
- Time to think
- Curiosity, perplexity
- At least one fully understood punch line
- Problem solving as a way of generating motivation
- "Think deeply of simple things"

